Tetravalent edge-transitive Cayley graphs with odd number of vertices

نویسندگان

  • Cai Heng Li
  • Zai Ping Lu
  • Hua Zhang
چکیده

A characterisation is given of edge-transitive Cayley graphs of valency 4 on odd number of vertices. The characterisation is then applied to solve several problems in the area of edge-transitive graphs: answering a question proposed by Xu (1998) regarding normal Cayley graphs; providing a method for constructing edge-transitive graphs of valency 4 with arbitrarily large vertex-stabiliser; constructing and characterising a new family of halftransitive graphs. Also this study leads to a construction of the first family of arc-transitive graphs of valency 4 which are non-Cayley graphs and have a ‘nice’ isomorphic 2-factorisation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number

In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Tetravalent half-arc-transitive graphs of order p4

A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set, edge set, but not arc set. Let p and q be primes. It is known that no tetravalent half-arc-transitive graphs of order 2p2 exist and a tetravalent half-arctransitive graph of order 4p must be non-Cayley; such a non-Cayley graph exists if and only if p − 1 is divisible by 8 and it is unique for a given o...

متن کامل

The vertex-transitive and edge-transitive tetravalent graphs of square-free order

In this paper, a classification is given for tetravalent graphs of square-free order which are vertex-transitive and edge-transitive. It is shown that such graphs are Cayley graphs, edge-regular metacirculants and covers of some graphs arisen from simple groups A7, J1 and PSL(2, p).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 96  شماره 

صفحات  -

تاریخ انتشار 2006